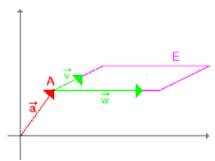
Parameterform von Ebenen aufstellen

Für alle Fälle gilt:

E = Die Ebene E

 \vec{x} = Vektor zu jedem beliebigem Punkt der Ebene E

s, s = Parameter


1. Fall: Ebene aufstellen, wenn ein Punkt A und zwei nicht parallele Richtungsvektoren \vec{v} und \vec{w} gegeben sind

$$E: \vec{x} = \vec{a} + r \cdot \vec{v} + s \cdot \vec{w}$$

A =Punkt auf der Ebene E

 \vec{a} = Stützvektor (Ortsvektor)

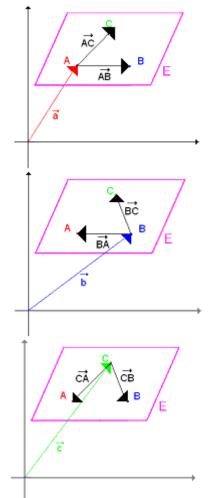
v, w = Richtungsvektoren

2. Fall: Ebene aufstellen, wenn 3 Punkte A, B und C gegeben sind

$$E: \vec{x} = \vec{a} + r \cdot \overrightarrow{AB} + s \cdot \overrightarrow{AC}$$

mit
$$\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$
 und $\overrightarrow{AC} = \overrightarrow{c} - \overrightarrow{a}$

$$\overrightarrow{AC} = \overrightarrow{c} - \overrightarrow{a}$$


 \vec{a} = Stützvektor (Ortsvektor)

 \overline{AB} , \overline{AC} = Richtungsvektoren

Alternativen:

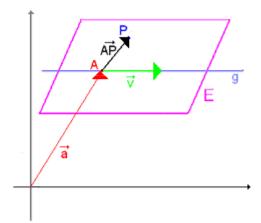
$$E: \vec{x} = \vec{b} + r \cdot \vec{BA} + s \cdot \vec{BC}$$

$$E: \vec{x} = \vec{c} + r \cdot \vec{CA} + s \cdot \vec{CB}$$

weiter Fälle auf der nächsten Seite

3. Fall: Ebene aufstellen, wenn ein Punkt P und eine Gerade $g: \vec{x} = \vec{a} + t \cdot \vec{v}$ gegeben sind.

$$\vec{a} \qquad \vec{AP}$$


$$E: \vec{x} = oder + r \cdot \vec{v} + s \cdot oder$$

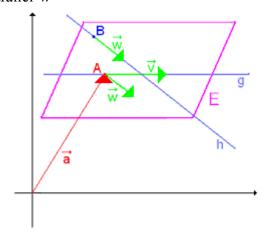
$$\vec{p} \qquad \vec{PA}$$

P = Punkt auf der Ebene E

 \vec{a}, \vec{p} = Stützvektoren (Ortsvektoren)

 \overrightarrow{v} , \overrightarrow{AP} , \overrightarrow{PA} = Richtungsvektoren

4. Fall: Ebene aufstellen, wenn zwei sich schneidende Geraden $g: \vec{x} = \vec{a} + t \cdot \vec{v}$ und $h: \vec{x} = \vec{b} + u \cdot \vec{w}$ gegeben sind, also \vec{v} nicht parallel \vec{w}

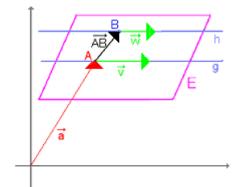

$$\vec{a}$$

$$E : \vec{x} = oder + r \cdot \vec{v} + s \cdot \vec{w}$$

$$\vec{b}$$

 $\vec{a}, \vec{b} = \text{St} \vec{u} tzvektoren (Ortsvektoren)$

 $\overrightarrow{v}, \overrightarrow{w} = \text{Richtungsvektoren}$


5. Fall: Ebene aufstellen, wenn zwei parallele Geraden $g: \vec{x} = \vec{a} + t \cdot \vec{v}$ und $h: \vec{x} = \vec{b} + u \cdot \vec{w}$ gegeben sind, also \vec{v} parallel zu \vec{w}

$$E: \vec{x} = oder + r \cdot oder + s \cdot oder$$

$$\vec{b} \qquad \vec{w} \qquad \vec{BA}$$

 $\vec{a}, \vec{b} = \text{Stützvektoren}$ (Ortsvektoren)

 $\overrightarrow{v}, \overrightarrow{w}, \overrightarrow{AB}, \overrightarrow{BA} = \text{Richtungsvektoren}$

