Gegenseitige Lage von Gerade und Ebene mit Hilfe des Schnittpunktes bestimmen (Variante 1)

1. Fall: Für die gegenseitige Lage einer Geraden $g: \vec{x} = \vec{b} + t \cdot \vec{u}$ in **Parameterform** und einer Ebene $E: n_x \cdot x + n_y \cdot y + n_z \cdot z = d$ in **Koordinatenform** gilt:

Aus
$$g$$
 in E mit
$$x = b_x + u_x \cdot t$$
$$y = b_y + u_y \cdot t$$
$$z = b_z + u_z \cdot t$$
als g

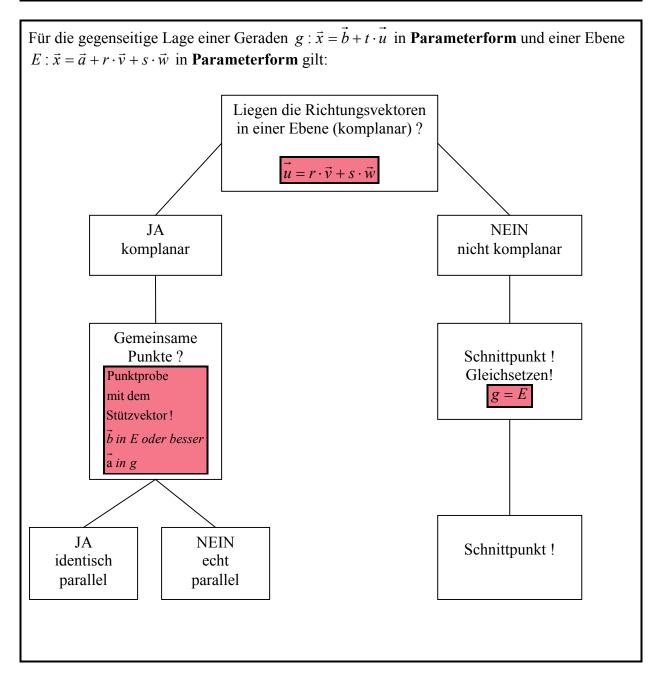
folgt die **Gleichung** $E: n_x \cdot (b_x + u_x \cdot t) + n_y \cdot (b_y + u_y \cdot t) + n_z \cdot (b_z + u_z \cdot t) = d$

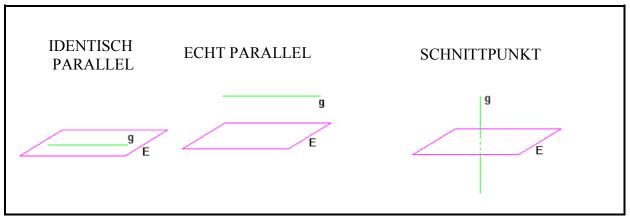
2. Fall: Für die gegenseitige Lage einer Geraden $g: \vec{x} = \vec{b} + t \cdot \vec{u}$ in **Parameterform** und einer Ebene $E: \vec{x} = \vec{a} + r \cdot \vec{v} + s \cdot \vec{w}$ in **Parameterform** gilt:

Aus
$$E = g$$
 folgt das **Gleichungssystem**
$$a_x + v_x r + w_x s = b_x + u_x t$$
$$a_y + v_y r + w_y s = b_y + u_y t$$
$$a_z + v_z r + w_z s = b_z + u_z t$$

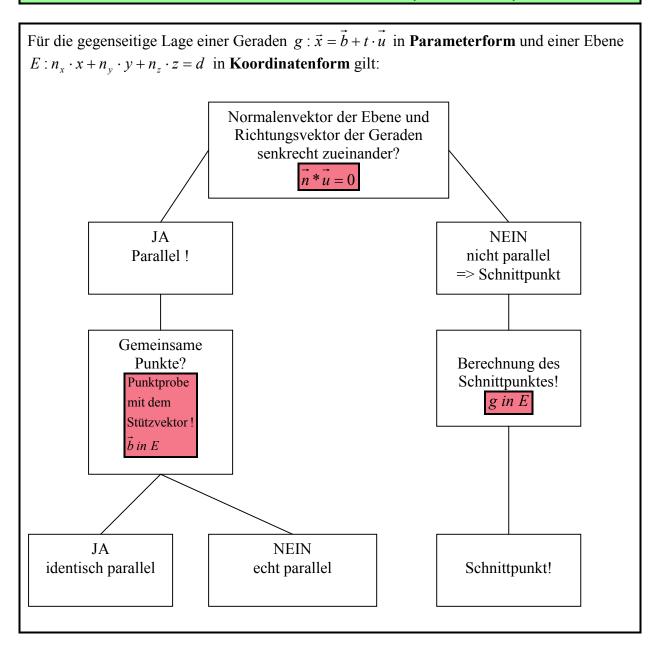
g =Gerade gE =Ebene E

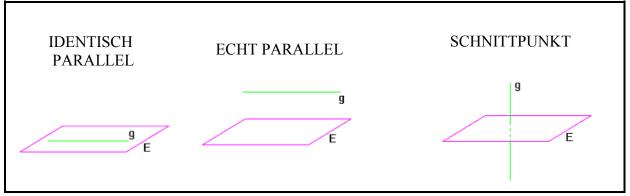
 $\vec{a}, \vec{b} = \text{Stüztvektoren}$


 $\vec{v}, \vec{w}, \vec{u} = \text{Richtungsvektoren}$


r; s, t = Parameter

 $?_{x};?_{y};?_{z} =$ Komponenten von diversen Vektoren


Die Lösung der Gleichung im 1. Fall bzw. des Gleichungssystems im 2. Fall lässt		
folgende Interpretationen zu:		
1.Fall 2.Fall $r =$ $s =$ $t =$	Eindeutig lösbar mit genau einer Lösung für den oder die Parameter besagt, dass Gerade und Ebene einen Schnittpunkt haben. Durch Einsetzen von t in g oder r und s in E kann dieser bestimmt werden.	g
Beide Fälle $m = n mit m \neq n$ d.h. Widerspruch	Nicht lösbar besagt, dass Gerade und Ebene keinen Schnittpunkt haben und demzufolge echt parallel zueinander sind	E
Beide Fälle $m = m$ d.h. wahre Aussage	Nicht eindeutig lösbar mit unendlich vielen Lösungen für die Parameter besagt, dass Gerade und Ebene identisch parallel sind, die Gerade liegt also in der Ebene	9 E


Gegenseitige Lage von Gerade und Ebene mit Hilfe der Richtungsvektoren bestimmen (Variante 2)

Gegenseitige Lage von Gerade und Ebene mit Hilfe des Normalenvektors bestimmen (Variante 3)

