Wendepunkte

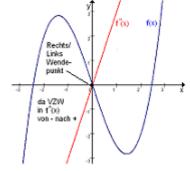
1. notwendige Bedingung:

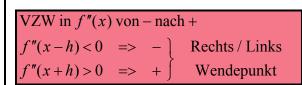
$$f''(x) = 0$$

$$f'(x) = 1$$
. Ableitung
 $f''(x) = 2$. Ableitung
 $VZW = Vorzeichenwechsel$

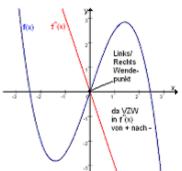
2. hinreichende Bedingung

Variante 1: Klassisch über die nächste Ableitung


$$f'''(x) \neq 0$$
 mit


$$f'''(x) < 0 => \text{Links/Rechts-Wendepunkt}$$

 $f'''(x) = 0 => \text{kein Wendepunkt}$
 $f'''(x) > 0 => \text{Rechts/Links-Wendepunkt}$


Variante 2: Alternativ durch Vorzeichenwechsel (VZW) in f''(x)

VZW in
$$f''(x)$$
 von + nach –
$$f''(x-h) > 0 \implies + \text{Links / Rechts}$$

$$f''(x+h) < 0 \implies - \text{Wendepunkt}$$

kein VZW in
$$f''(x)$$

 $f''(x-h) > 0 \implies +$
 $f''(x+h) > 0 \implies +$ kein Wendepunkt

kein VZW in
$$f''(x)$$

 $f''(x-h) < 0 \implies -$
 $f''(x+h) < 0 \implies -$
kein Wendepunkt

Kein Wendepunkt

Anmerkung: In Wendepunkten ändert sich die Krümmung